Phylogenetic relationships among prokaryotic and eukaryotic catalases.

نویسندگان

  • M G Klotz
  • G R Klassen
  • P C Loewen
چکیده

Seventy-four catalase protein sequences, including 29 bacterial, 8 fungal, 7 animal, and 30 plant sequences, were compiled, and 70 were used for phylogenetic reconstruction. The core of the resulting tree revealed unique, separate groups of plant and animal catalases, two groups of fungal catalases, and three groups of bacterial catalases. The only overlap of kingdoms occurred within one branch and involved fungal and bacterial large-subunit enzymes. The other fungal branch was closely linked to the group of animal enzymes. Group I bacterial catalases were more closely related to the plant enzymes and contained such diverse taxa as the Gram-positive Listeria seeligeri, Deinocococcus radiodurans, and gamma-proteobacteria. Group III bacterial sequences were more closely related to fungal and animal sequences and included enzymes from a broad range of bacteria including high- and low-GC Gram positives, proteobacteria, and a bacteroides species. Group II was composed of large-subunit catalases from diverse sources including Gram positives (low-GC Bacilli and high-GC Mycobacteria), proteobacteria, and species of the filamentous fungus Aspergillus. These data can be interpreted in terms of two gene duplication events that produced a minimum of three catalase gene family members that subsequently evolved in response to environmental demands. Horizontal gene transfer may have been responsible for the group II mixture of bacterial and fungal large-subunit catalases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular evolution of hydrogen peroxide degrading enzymes

For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three ge...

متن کامل

Prokaryotic phylogenies inferred from protein structural domains.

The determination of the phylogenetic relationships among microorganisms has long relied primarily on gene sequence information. Given that prokaryotic organisms often lack morphological characteristics amenable to phylogenetic analysis, prokaryotic phylogenies, in particular, are often based on sequence data. In this work, we explore a new source of phylogenetic information, the distribution o...

متن کامل

Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases.

Histoplasma capsulatum produces an extracellular catalase termed M antigen, which is similar to catalase B of Aspergillus and Emericella species. Evidence is presented here for two additional catalase isozymes in H. capsulatum. Catalase A is highly similar to a large-subunit catalase in Aspergillus and Emericella species, while catalase P is a small-subunit catalase protein with greatest simila...

متن کامل

Gene similarity networks provide tools for understanding eukaryote origins and evolution.

The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukary...

متن کامل

Domain-Based Identification and Analysis of Glutamate Receptor Ion Channels and Their Relatives in Prokaryotes

Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 1997